<-- Prev

Public-Key Cryptography

Next -->
  • Computing Public Values
    25 pts · 5394 Solves · 5 Solutions
    The Diffie-Hellman protocol is used because the discrete logarithm is assumed to be a "hard" computation for carefully chosen groups.

    The first step of the protocol is to establish a prime $p$ and some generator of the finite field $g$. These must be carefully chosen to avoid special cases where the discrete log can be solved with efficient algorithms. For example, a safe prime $p = 2 \cdot q +1$ is usually picked such that the only factors of $p - 1$ are $\{2,q\}$ where $q$ is some other large prime. This protects DH from the Pohlig–Hellman algorithm.

    The user then picks a secret integer $a < p - 1$ and calculates $g^a \mod p$. This can be transmitted over an insecure network and due to the assumed difficulty of the discrete logarithm, the secret integer should be infeasible to compute. The value $a$ is known as the secret value, while $A = g^a \mod p$ is the public value.

    Given the NIST parameters:

    g: 2
    p: 2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919


    Calculate the value of $g^a \mod p$ for

    a: 972107443837033796245864316200458246846904598488981605856765890478853088246897345487328491037710219222038930943365848626194109830309179393018216763327572120124760140018038673999837643377590434413866611132403979547150659053897355593394492586978400044375465657296027592948349589216415363722668361328689588996541370097559090335137676411595949335857341797148926151694299575970292809805314431447043469447485957669949989090202320234337890323293401862304986599884732815

    You must be logged in to submit your flag.


Level Up

level up icon

You are now level Current level